
Tsohnlcs Re"s
CLVWEI-e3-TR-34
ESC-TR40321

___ _ai negie-Mellon University

--- Software Engineering Institute

AD-A279 014

ELECTE fMAY. 8(IS 4uB Il

A Taxonomy of Coordinai-tibon
Mechanisms Used in Real-Time
Software Based on Domain
"Analysis

/ Jose L. Fernandez

December 1993

/ for

ei)94-13600

94/\,,5 0 8



Technical Report

CMU/SEI-93-TR-34
ESC-TR-93-321
December 1993

A Taxonomy of Coordination
Mechanisms Used in Real-Time

Software Based on Domain Analysis

Jose L. Fernandez
Application of Software Models Project

Approved for public release.
Distribution unlimited.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213



This technical report was prepared for the

SEI Joint Program Office
ESC/ENS
Hanscom AFB, MA 01731-2116

The Ideas and findings in this report should not be construed as an official
DoD position. it is published in the Interest of scientific and technical
information exchange.

Review and Approval

This report has been reviewed and is approved for publication.

FOR THE COMMANDER

Thomas R. Miller, Ut Col, USAF
SEt Joint Program Office

The Software Engineering Institute is sponsored by the U.S. Department of Defense.
This report was funded by the U.S. Department of Defense.

Copyright 0 1994 by Carnegie Mellon University.
Copies of this document as available from Research Access, Inc.. 800 Vinial Street% Pittsburgh, PA 15212. Telephone: (412)
321-2992 or 1-804.854510, Fax: (412) 321-2994.

This document is avaable through the Defense Technical Information Center. DTIC provides access to and transfer of
scentific and technical information for DoD personnel, DoD contactors and potential contractors, and other U.S. Government
agency personnel and their contractors. To obtain a copy. please contact DTIC directly: Defense Technical Information
Center, Attn: FDRA, Cameron Station, Alexandria, VA 22304-6145.
Copies of this document are also available through the National Technical Information Service. For information on ordering,
please contact NTIS recty•: National Technical tnformation Service, U.S. Department of Commerce. Springfield, VA 22161.

Use of any trademarks in this report is not Intended In any way to inringe on the rights of the trademark hokler.



Table of Contents

Acknowledgments v

1 Introduction 1
1.1 Problem Statement 1
1.2 Scope of the Work 2
1.3 Related Work 4

2 Review of the Coordination Mechanisms Used in Ada Real-Time
Systems 9
2.1 The Ada Development Alternatives 9
2.2 Description of the Coordination Mechanisms 11

3 Properties of the Coordination Mechanisms 23
3.1 Synchronization Properties 23
3.2 Communication Properties 23
3.3 Implementation Issues 24

4 Features Model of the Coordination Mechanisms 29
4.1 Identification Features 30
4.2 Synchronization Features 31
4.3 Communication Features 33
4.4 Implementation Features 34

5 Guidelines for Using the Taxonomy 37
5.1 Application of the Guidelines 37
5.2 Abstraction Related Guidelines 37
5.3 Implementation Related Guidelines 39
5.4 Communication-Related Guidelines 39
5.5 Synchronization Related Guidelines 40
5.6 Scheduling Issues 41

6 Conclusions 43

7 References 45

Appendix A Taxonomy 47

Appendix B Coordination Mechanisms Catalog 51

CMU/SEI-93-TR-34



Hi CMUISEI-93-TR-34



List of Figures

Figure 4-1: Top Level Features Model for the Coordination Mechanisms 30
Figure 4-2: Synchronization Features 32
Figure 4-3: Communication Features 33
Figure 4-4: Implementation Features 34

,AcOeSston For'

MIS A&I
OIYFC TAJS El

BY-

3ijaiiy todeg

Dist spCo9aT

CMU/SEI-93-TR-34 Wi



IV CMU/SEt-93-TR-34



Acknowledgments
This work was performed during my stay at the Software Engineering Institute as a
resident affiliate working in the Applications of Software Models Project.

Sholom Cohen, responsible of the project, contributed valuable advice to the use of the
Features Oriented Domain Analysis in this report.

The comments and suggestions of the following reviewers were also considered in the
report.

Jorge Diaz-Herrera (SEI)

Patrick Donohoe (SEI)

Francisco Gomez (Tour and Andersson)

Robert Krut (SEI)

Juan A. de la Puente (Universidad Politecnica de Madrid)

Ragunatham Rajkumar (SEI)

Lui Sha (SEI)

James Withey (SEI)

CMU/SEI-93-TR-34



vi CMU/SEI-93-TF4-34



A Taxonomy of Coordination Mechanisms Used in
Real-Time Software Based on Domain Analysis

Abstract: A taxonomy of the coordination mechanisms for the
synchronization and communication of concurrent processes is proposed. The
taxonomy deals with the issues of a real-time software architecture that are
application domain independent. The taxonomy will help the designer to find
the appropriate coordination mechanisms for building a real-time domain
specific software architecture.

Features Oriented Domain Analysis methodology has been used to describe
the taxonomy. While Ada is the programming language that has been used
here, some of the attributes and guidelines are still valid for other programming
languages.

1 Introduction

1.1 Problem Statement

In the design of a real-time system, the identification, synchronization, and communication of
concurrent activities is a major issue. Frequently software architectures are designed based
only on functional or object-oriented decomposition criteria, postponing to the coding phase
decisions about processes, synchronization, and communication.1 While such an approach
may be appropriate for those systems where timing constraints are not the issue, this is not
the case in real-time applications.

Time is a critical factor in a real-time software architecture, just as load stress is critical in a
building structure. Some apparently well-designed bridges and buildings have failed because
of miscalculating loads or the bad design of the structure connections (Petroski 92].

It is important to find engineering principles that will help software engineers build reliable real-
time software architectures that will meet timing constraints. Much research has been done on
scheduling issues [Xu 93],[Sha 89], but engineers also need guidance in the selection of the
coordination mechanisms for use between processes, just as civil engineers must select struc-
ture connections suitable for their needs.

A domain analysis of the services provided by real-time executives and extended Ada runtime
libraries allows us to understand and categorize the coordination mechanisms into a taxono-
my. The taxonomy is related to the Ada programming language, but it is not constrained by

1. Synchronization is the blocking of a process until some specified condition is met. Communication is the
transfer of information between processes. Coordination encompasses both properties.

CMU/SEI-93-TR-34



the Ada rendezvous communication mechanism. This is because although practical applica-
tions do use Ada because of Ada's modularization constructs (i.e. packages, generics), they
do not use Ada rendezvous. In its place, the services of a real-time executive are used.

While real-time executives may improve efficiency, they may also result in reduced portability
and reduced reusability. Standardization efforts, some of them mentioned in this report, would
disminish these drawbacks.

The new version of Ada, Ada 9X, gives to the software engineer options not available in Ada
83. Ada 9X protected types offer the option of building coordination mechanisms that are effi-
cient, reusable, and portable. Bames, for example, describes a bounded-buffer using a pro-
tected type [Barnes 93]. More work remains to be done in this area.

The above concerns lead us to consider both kinds of mechanisms in the domain analysis:
those based on pure Ada features and those based on real-time executives that can be used
with Ada.

1.2 Scope of the Work

Design issues concerning coordination mechanisms can be organized in a taxonomy which
describes their properties as decision choices. Many methods for organizing collections of soft
ware components have been proposed, including traditional library and information science
methods and knowledge-based methods.

Our approach is to develop a taxonomy of the coordination mechanisms based on the outputs
of a domain analysis process. Domain analysis is the key to systematic, formal, and effective
reuse. It is through domain analysis that knowledge is transformed into generic specifications,
designs, and architectures.2

Although the scope of this work is not as broad as a typical software reuse effort [Cohen 92],
domain analysis offers a systematic and structural way for classifying the features 3 of the co-
ordination mechanisms.

Feature Oriented Domain Analysis (FODA) [Kang 90] is the domain analysis method chosen
in this work. FODA is based on identifying features of a class of systems. The FODA process
defines three basic activities:

Context Analysis. The purpose of context analysis is to define the scope
of the domain that is likely to yield exploitable domain products.

2. R. Prieto-Diaz. Status Report: Software Reusability. IEEE Software, May 1993.

3a Features are the attributes of a system that directly affects end users [Kang 90].

2 CMU/SEI-93-TR-34



" Domain Modelling. Commonalities and differences of the problems that
are addressed by the applications in the domain are analyzed and a
number of models representing different aspects of the problems are
produced (features model, entity-relationship-attribute model, data flow
model, and finite-state machine model).

"* Architecture Modelling. The purpose of architecture modelling is to
provide a software solution to the problems defined in the domain
modelling phase.

In our particular situation, we are not performing a full domain analysis of a family of systems;
our goal is less ambitious. We are trying to classify consistently the coordination mechanisms
to be used for Ada real-time applications.

The FODA domain modelling process and particularly its features model output provides the
taxonomy user with a structure for representing the attributes of the coordination mechanisms.
FODA does this by decomposing features in a hierarchy and classifying them as either man-
datory, alternative, or optional.

The contents of the report reflects the approach followed in the domain analysis of the coordi-
nation mechanisms.

Chapter 2 reviews the coordination mechanisms used in Ada applications. Coordinat;on
mechanisms are described in terms of three aspects: abstraction supported, services provid-
ed, and implementation. Chapter 2 is recommended for those readers not familiar with the
standardization efforts of ARTEWG [ARTEWG 93] or RRG [RRG 93].

Chapter 3 describes the main properties that characterize a coordination mechanism. This de-
scription is a prerequisite step in the classification of these properties in the features model.

Chapter 4 represents the FODA features model for coordination mechanisms attributes.
FODA features model notation is also explained.

Chapter 5 gives a set of rules identifying the key choices made in selecting the coordination
mechanism best suited to a particular problem. The rules are formulated relating the problem
requirements with the taxonomy of coordination mechanisms proposed.

Appendix A represents the taxonomy of the coordination mechanisms analyzed. The features
corresponding to a particular coordination mechanism are represented.

Appendix B describes the catalog of the coordination mechanisms analyzed. The information
in this appendix is important in determining which coordination mechanisms are Ada-support-
ed and which use the services of a real-time operating system.

CMU/SEI-93-TR-34 3



1.3 Related Work

Several taxonomies, which consider different coordination mechanisms and their intrinsic
properties, have been developed earlier [Bloom 79], [Ripps 89], [Chi 91]. The following three
approaches will be the focus of this section:

1. Evaluation of Synchronization Mechanisms. A set of categories is proposed
by Bloom to evaluate the modularity, the expressive power, and the ease of
use of a synchronization mechanism.

2. Taxonomy of Coordination Methods. A taxonomy of coordination methods
supported by a real-time operating system is presented by Ripps. The
classification of the coordination methods rests upon a set of dichotomies.

3. Ada Task Taxonomy. A taxonomy of mechanisms implemented in Ada is
proposed by Chi. The classification is based on task interactive
characteristics, functions, and procedural behavior.

The following sections describe each of these approaches.

1.3.1 Evaluation of Synchronization Mechanisms
Bloom [Bloom 79] determines that synchronization mechanisms are composed of exclusion
and priority constraints, where each has the form:

if condition then exclude process A

or

if condition then process A has priority over process B

Within these two main classes, constraints differ mainly in the kinds of information referred to
in these conditional clauses. The information falls in several categories:

1. Access Operation Requested. Exclusion or prioritization are based on the
type of operation requested.

2. Arrival Times of Requests. Frequently the relative time of arrival of the
requests determines their order.

3. Request Parameters. In some cases rhe arguments are used to evaluate the
ordering of the requests.

4. Synchronization State of the Resource. This includes all state information
needed only for synchronization purposes.

5. Local State of the Resource. All state information as it relates to the
abstraction represented by the resource is included here.

6. History Information. Information conceming complete operations or events
regarding the resource is considered.

4 CMU/SEI-93-TR-34



The methodology described is used to evaluate three synchronization mechanisms: path ex-
pressions, monitors, and serializers.

1.3.2 Classification of Coordination Methods
Ripps proposed a classification of coordination methods 4 to be used in C applications. The
methods are supported by an operating system [Ripps 89]. An Ada applications version of
this operating system already exists [Industrial 88].

The coordination methods are analyzed and classified according to the following dichotomies:

1. Double-Sided versus Single-Sided. Double-sided methods are symmetrical:
whichever process gets to the coordination point first waits for its partner. In
contrast, single-sided methods are asymmetrical: one process coordinates
with another but not vice-versa.

2. Directed versus Non-Directed. In directed methods the identity of the target
process must be specifically known to the coordinator. In non-directed
methods, the identity of the target process is hidden.

3. Single-Enabling versus Multiply-Enabling. Single-enabling methods allow
any one partner process to proceed at a time when more than one is waiting
for coordination. Multiply-enabling methods release all partner processes that
satisfy the coordination condition.

4. Stored versus Transient. For stored methods, the operating system retains
the coordination information until it is needed by those methods with storing
capability. With transient methods, information is not latched so it is lost if the
target process is not waiting.

5. Unidirectional versus Bidirectional. The information flow may be in either one
or two directions.

These dichotomies are applied in classifying diverse coordination mechanisms including
event-oriented mechanisms, controlled-shared variables, semaphores, mailboxes, and Ada
rendezvous.

1.3.3 Ada Task Taxonomy

A taxonomy encapsulating nine kinds of tasks implemented in Ada is proposed [Chi 91].
The taxonomy not only includes coordination mechanisms but also other roles: manager
task, agent task, secretary task, scheduler, and input/output. The coordination mecha-
nisms included are buffers, relays, and transporters.

4. The concept of a coordination method described by Ripps and the coordination mechanism used in this report
are equivalent.

CMU/SEI-93.TR-34 5



Tasks are classified according to their interactive characteristics, the relationships between
them, and the types of entries that characterize the task kind.

Interactive task characteristics describe the interaction patterns between the coordinating
partners. Namely:

"* One- and two-way interactions
"* Degrees of interaction
"* Master to task calling

"* Task to task calling
Task relationships are of three major types: basic relations, cohesive relations, and coupling
relations.

Chi Tau Lai [Chi9l] describes seven possible interactive types of entries that characterize a
task. These entries are:

"* Get data.
"* Give data.
"* Open guard.
"• Close guard.
"* Add event.
"• Get event.
" Do it.

A set of tools based on this taxonomy is proposed. The tools being developed are taxonomy-
based editors, reverse engineering tools, and design aid tools using design and check rules.

1.3.4 Relationship to Previous Research
The previous works establish the foundation for the domain analysis activity described in
this report.

The work by Bloom [Bloom 79] defines the main concepts regarding the synchronization
properties of a coordination mechanism. Communication properties are not described ad-
equately. The mechanisms analyzed are less sophisticated than the mechanisms avail-
able today.

The classification proposed by Ripps [Ripps 89] includes the mechanisms supported by a
real-time operating system. The attributes are represented as dichotomies, however, and
are not structured hierarchically.

The taxonomy proposed by Chi Tau Lai [Chi 91] not only includes coordination mechanisms
but also other roles: manager task, agent task, scheduler, and input/output. The coordination
mechanisms classified are Ada-based. For this reason, synchronization properties are not
fully covered.

6 CMU/SEI-93-TR-34



The FODA domain analysis methodology applied in this report allows us to represent hier-
archically and completely the attributes describing a coordination mechanism. The variety of
coordination mechanisms analyzed is not found in previous research. Coordination mecha-
nisms analyzed are either entirely Ada-based, based on an extended solution using a com-
mon set of user- accessible runtime environment interfaces, or use the services provided by
a real-time operating system. The currently standardization efforts allow us to consider this
variety of approaches.

CMU/SEI-93-TR-34 7



8 CMU/SEI-93-TR-34



2 Review of the Coordination Mechanisms Used in
Ada Real-Time Systems

Before describing the different coordination mechanisms that can be used in real-time

applications developed in Ada, it is important to understand the Ada runtime environment
and the differences between Ada targeted for a real-time executive or Ada targeted to a
bare machine.

2.1 The Ada Development Alternatives

The diversity and importance of the implementation features (e.g., tasking, exceptions

and interrupts) handled in real-time applications developed in Ada require a develop-
ment environment more complex than other programming languages.

The Ada Runtime Environment (RTE) consists of abstract data structures, code sequenc-

es, and predefined subroutines that are used by the compilation system to produce a
translated program.

The set of predefined routines included in the loaded image of a program is called the
Runtime System (RTS). The set of routines available for inclusion in a RTS is called the
Runtime Library (RTL).

The major functionalities of the Ada runtime system are:

"* Task scheduling and dispatching

"• Time management
"* Dynamic storage management
"* Task coordination by rendezvous

"* Exception handling
"* Task lifetime control
- Interrupt management

"* Input/Output management
"* Application boot

"• Floating point arithmetic

More information about the Ada RTE can be found elsewhere [Kamrad 92].

CMU/SEI-93-TR-34 9



The underlying hardware, the portability requirements, or other software requirements
point out the different implementation alternatives that exist when developing an Ada ap-
plication. The most likely alternatives are:

* Solution constrained by the Ada language features.

* Hybrid solution using the services of a real-time executive or operating
system.

* Extended solution using a common set of user-accessible runtime
environment interfaces.

The plain Ada alternative is recommended in those situations where portability is the main
concern. Some of the coordination mechanisms described below could be implemented
using the Ada language primitives, but in some cases this would lead to abstraction inver-
sion situations with severe performance penalties.5

The hybrid solution is chosen when the underlying hardware requires it or because the
software architecture is not adequately implemented by a plain Ada solution. For example,
some multiprocessing and distributed systems are developed in Ada using the services of
an operating system. There are commercial products supporting this approach. Some
standardization efforts currently underway also support this approach [ARINC 93]. Some
coordination mechanisms are well-suited to this solution. The portability drawback, howev-
er, should be considered.

A third alternative is useful when increased portability is required. This solution, supported
by an underway standardization effort [ARTEWG 93], provides a set of interfaces from a
user's perspective. These interfaces, named "entries" in the ARTEWG's document, repre-
sent "contracts" provided to the application developers rather than to the compiler builders.

The entries supported by the Catalogue of Interface Features and Options (CIFO) not only
include the coordination mechanisms that are supported but other real-time issues. The

entries regarding asynchronous cooperating mechanisms are:

"* Barriers
"* Blackboards
"• Broadcast
"• Buffers
"• Events
"* Mutually exclusive access to shared data
"* Resources
"* Shared locks
"• Signals

5. Abstraction inversion exists when a simple coordination mechanism is simulated while using a complex one.
An example would be simulating a semaphore with rendezvous. Sometimes (but not always) compiler
optimizers are able to overcome the penalties of abstraction inversion.

10 CMU/SEI-93-TR-34



2.2 Description of the Coordination Mechanisms

The description of the coordination mechanisms follows the 3C model of a software com-
ponents that is decisive for any software reusable component:

"* The abstraction supported by the component (concept)
"• The software environment necessary for the component to be meaningful

(context)
"* The implementation of the component (content)

For our purposes the description of each coordination mechanism is split into:

"• Abstraction supported
"• Services provided
"• Implementation issues

2.2.1 Barrier
1. Abstraction Supported

The barrier controls the simultaneous resumption(s) of some fixed number of

waiting tasks.

2. Services Provided

Once created (CREATE) tasks may wait (WAIT) at the barrier until
CAPACITY tasks are waiting. When this condition occurs, the CAPACITY
waiting tasks are resumed simultaneously. A barrier may be observed
(COUNT, VALUE, CAPACITY) and deleted (DESTROY).

The interfaces proposed for these services could be:

function CREATE (CAPACITY: in CAPACITY_RANGE; NAME:
in STRING:=') return BARRIER;

function CAPACITY (B: in BARRIER) return CAPACITYRANGE;
procedure WAIT (B: in BARRIER);
procedure DESTROY (B: in out BARRIER);
function COUNT (B: in BARRIER) return WAITINGRANGE;
function VALUE (B: in BARRIER) return CAPACITY_RANGE;

3. Implementation Issues

The barrier is implemented as an extended solution using a common set of
user-runtime environment interfaces. A more detailed description can be

6"Edwards, S. The 3C Model of Reusable Software Components. Proceedings of the Third Annual Workshop:
Methods and Tools for Reuse. Syracuse University TR No. 9014. Syracuse, N.Y., 1990.

CMU/SEI-93-TR-34 11



found in CIFO entries [ARTEWG 93]. In the presence of priority inheritance
discipline, the active priority of the agents will be raised or lowered to the
highest priority of any task waiting to use the services of the barrier.

2.2.2 Blackboard

1. Abstraction Supported

The blackboard makes a message visible to various reading tasks.7

2. Services Provided

Once created (CREATE) a blackboard may be written on (DISPLAY). The written
information may be read (READ) by tasks until the information is cleared
(CLEAR). A blackboard may be observed (COUNT, STATE) and deleted (DE-
STROY).

The interfaces provided for these services could be:

function CREATE (NAME: in STRING:= ') return BLACKBOARD;
procedure READ (B: in BLACKBOARD; M: out MESSAGE);
procedure DISPLAY (B: in BLACKBOARD; M: in MESSAGE);
procedure CLEAR (B: in BLACKBOARD);
procedure DESTROY (B: in out BLACKBOARD);
function COUNT (B: in BLACKBOARD) return WAITINGRANGE;
function STATE (B: in BLACKBOARD) return BLACKBOARDSTATE;

3. Implementation Issues

The blackboard is implemented as an extended solution using a common set of
user-runtime environment interfaces. A more detailed description can be found in
CIFO entries [ARTEWG 93].

In the presence of priority inheritance discipline the active priority of the black-
board will be raised or lowered to the highest priority of any task waiting to use the
services of the blackboard.

7. The blackboard described here is not necessarily the blackboard concept used in artificial intelligence. An

example in Ada can be found in Steven P. Stockman, ABLE: An Ada-Based Blackboard System. Proceedings
of AIDA-88, November 1988.

12 CMU/SEI-93-TR-34



2.2.3 Bounded-Buffer
1. Abstraction Supported

The bounded-buffer, also called buffer, is a temporary data holding area. Data
producers and consumers make calls to send and get data from the bounded-
buffer. Since the producers and consumers can run asynchronously, the buffer
has a bounded capacity for storing data.

2. Services Provided

Once created (CREATE) a bounded-buffer may be used by producer tasks to
send (SEND) messages. Such messages may be consumed (RECEIVE) by
the consumer tasks. CAPACITY messages may be kept in the buffer. A
bounded-buffer may be observed (MESSAGE_COUNT, MESSAGEVALUE)
and deleted (DESTROY).

The interfaces provided by these services could be:

function CREATE (CAPACITY: in CAPACITYRANGE:= 1; NAME:
in STRING:=") retum BUFFER;

function CAPACITY (B: in BUFFER) return CAPACITYRANGE;
procedure RECEIVE (B: in BUFFER; M: out MESSAGE);
procedure SEND (B: in BUFFER M: in MESSAGE);
procedure DESTROY (B: in out BUFFER);
function MESSAGE_COUNT (B: in BUFFER) return MESSAGECOUNT_

RANGE;
function MESSAGEVALUE (B: in BUFFER; I: in CAPACITYRANGE:= 1)
retum MESSAGE;

3. Implementation Issues

Examples of bounded-buffers are implemented either using Ada language
[NSWC 88], a real-time executive [ARINC 93], or a common set of user-runt-
ime environment interfaces knows as CIFO entries [ARTEWG 93]. Ada 9X pro-
tected types are also used implementing a bounded-buffer [Bames 93].The
bounded-buffer could be implemented as a passive task.

In the presence of priority inheritance discipline the active priority of the agents
will be raised or lowered to the highest priority of any task waiting to use the ser-
vices of the buffer. The queues that are used in the bounded-buffer would ide-
ally implement priority queues.

CMU/SEI-93-TR-34 13



2.2.4 Broadcast
1. Abstraction Supported

The broadcast coordination mechanism supports sending a message to all
the tasks waiting for it.

2. Services Provided

Once created (CREATE) a broadcast may be used to send (SEND) a message
to all the tasks waiting for it (RECEIVE). This message is then consumed. A
broadcast may be observed (COUNT) and deleted (DESTROY).

The interfaces provided for these services could be:

function CREATE (NAME: in STRING:= ") return BROADCAST;
procedure RECEIVE (B: in BROADCAST; M: out MESSAGE);
procedure SEND (B: in BROADCAST; M: in MESSAGE);
procedure DESTROY (B: in out BROADCAST);
function COUNT (B: in BROADCAST) return WAITING_RANGE;

3. Implementation Issues

The broadcast is implemented as an extended solution using a common set
of user-runtime environment interfaces. A more detailed description can be
found in CIFO entries [ARTEWG 93].

In the presence of a priority inheritance discipline the active priority of the
agents will be raised or lowered to the highest priority of any task waiting to
use the services of the broadcast mechanism.

2.2.5 Event
1. Abstraction Supported

The event is a mechanism that allows notification of any waiting tasks upon
the occurrence of a discrete condition. There are two possible states, often
called up and down. Up indicates that the condition is true, and down indi-
cates it is false.

2. Services Provided

Once created (CREATE) an event coordination mechanism may be set
(SET) to the state "condition has occurred" or reset (RESET). Tasks may wait
for this occurrence (WAIT). The event coordination mechanism may be ob-
served (COUNT, STATE) and deleted (DESTROY).

The interfaces provided by these services could be:

14 CMU/SEI-93-TR-34



function CREATE(INITIAL: in EVENT_STATE:= DOWN; NAME:
in STRING:=")

return EVENT;
procedure WAIT (E: in EVENT);
procedure SET (E: in EVENT);
procedure RESET (E: in EVENT);
procedure DESTROY (E: in out EVENT);
function COUNT (E: in EVENT) return WAITINGRANGE;
function STATE (E: in EVENT) return EVENT_STATE;

3. Implementation Issues

Examples of event mechanism are implemented either using a real time executive
or a common set of user-runtime environment interfaces known as CIFO entries
[ARTEWG 93].

In the presence of prority inheritance discipline the active priority of the agents
will be raised or lowered to the highest priority of any task waiting to use the ser-
vices of the event object. The queries that are used in the event object would ide-
ally implement priority queues.

2.2.6 General-Semaphore
1. Abstraction Supported

The general-semaphore is a non-negative integer value used as a synchroniza-
tion mechanism.

2. Services Provided

The general-semaphore is created (CREATE) as an object with a specified current
value and a maximum value. The maximum value parameter (MAXIMUM-VALUE)
is the maximum value to which the general-semaphore can be signalled. The cur-
rent value (CURRENTVALUE) is the general-semaphore's starting value after
creation. The operation (WAIT) is used to suspend a client process if there are no
free resources (that is the current value =0). The operation signal is used to wake
a previously suspended process, if any exist. The general-semaphore can be ob-
served (GET-STATUS) and reset (RESET).

3. Implementation Issues

The general semaphore is implemented using a real-time executive [ARINC 93].
In this implementation, a waiting process is queued until either a signal is received
or until a specified amount of time expires. Signalling a semaphore increments
the semaphore value if no suspended processes wait on the semaphore. When
processes are waiting on the semaphore, the signal will be given to the highest
current priority queued process. In the event there are multiple processes of the

CMU/SEI-93-TR-34 15



same highest current priority, a First In First Out (FIFO) algorithm will be applied
to determine which process will receive the signal.

2.2.7 Lock

1. Abstraction Supported

The lock is a mechanism that arbitrates the accesses to a resource. The user
tasks can either request exclusive or shared access to the lock.

2. Services Provided

Once a lock is created (CREATE), any task user must obtain an identification
(NEWLOCKUSER) prior to using it. Then the task user can request the lock,
either waiting until it is granted (WAIT-REQUEST) or continuing in any case
(NO-WAITREQUEST). The release procedure (RELEASE) is called to change
the status of the lock from locked to unlocked. A task user can consult the current
status of the lock (STATUS-LOCK). The lock can be deleted (DESTROY).

The interfaces provided by these services could be:

function CREATE return LOCK_ID;

function NEWLOCKUSER return LOCKUSERID;

function WAIT_REQUEST rTHELOCK: in LOCKID; THE_USER: in
LjCKUSERID;REQUESTTYPE: in
ACCESSTYPE);

return BOOLEAN;

function NO_WAITREQUEST(THELOCK:in LOCK_ID;THEUSER: in
LOCK_USER_ID;REQUEST_TYPE: in
ACCESSTYPE)

return BOOLEAN;

procedure RELEASE (THE-LOCK: in LOCK_ID;THE_USER: in
LOCKUSER-ID);

function STATUSLOCK (THE-LOCK: in LOCK_ID; THEUSER: in
LOCKUSERID)

return LOCKSTATUS;

procedure DESTROY (THE-LOCK: in out LOCKID);

3. Implementation Issues

The above interface is based on the Ada implementation of a lock manager
[NSWC 88]. An alternative to avoid the overhead of the Ada rendezvous is to take
full advantage of hardware or real-time operating system instructions for resource
serialization. A common Ada interface to such capabilities is provided in CIFO en-

16 CMU/SEI-93-TR-34



tries [ARTEWG93]. A generic package is proposed to provide combinations of the
desired resource access (exclusive only versus shared and exclusive) plus the
queuing discipline (FIFO, priority) to be used when the lock is unavailable.

2.2.8 Mailbox
1. Abstraction Supported

A mailbox is an object that two or more processes can use to pass messages be-
tween them via the SEND and RECEIVE operations.

2. Services Provided

Once opened (OPEN), the mailbox can be used to transfer messages. A process
sending a message (SEND) has the option of continuing or waiting until the mes-
sage is received. Similarly, a process seeking a message at a mailbox (RE-
CEIVE) that presently has no messages can either continue or wait for the next
message to arrive. The content of the message is not copied until the receiver is
available and the transfer is made directly to the receiver process. A mailbox can
be closed (CLOSE).

3. Implementation Issues

An example of a mailbox based on a real-time executive is described else-
where [Ripps 89]. There is a version of this executive supporting Ada applica-
tions [Industrial 88].

2.2.9 Pulse

1. Abstraction Supported

A pulse is a synchronization mechanism that notifies any waiting tasks upon the
occurrence of a pulsed condition. This occurrence is not latched so it does not
influence any later waiting task.

2. Services Provided

Once created (CREATE), a pulse may be set (SET) to notify such an occur-
rence to the tasks waiting for it (WAIT). A pulse may be observed (COUNT) and
deleted (DESTROY).

The interfaces provided by these services could be:

function CREATE (NAME: in STRING:= ") return PULSE;
procedure WAIT (P: in PULSE);
procedure SET (P: in PULSE);
procedure DESTROY (P: in out PULSE);
function COUNT (P: in PULSE) return WAITING_RANGE;

CMU/SEI-93-TR-34 17



3. Implementation Issues

The pulse is implemented as an extended solution using a common set of
user-runtime environment interfaces. More detailed information can be found
in CIFO entries [ARTEWG 93].

In the presence of priority inheritance disciplines active priority of the agents
will be raised or lowered to the highest priority of any task waiting to use the
services of the pulse mechanism.

2.2.10 Relay

1. Abstraction Supported

The relay is a temporary data holding area. The relay accepts a message from
a producer task, and then transfers the message to a consumer or another in-
termediary via a call.

2. Services Provided

A relay may be used by producer tasks to send messages (SEND). The relay
transfers the message to a consumer via an entry call.

The interface provided could be:

entry SEND (M: in MESSAGE);

3. Implementation Issues

The relay is implemented using Ada. An example of the Ada implementation can
be found elsewhere [Nielsen 88].

2.2.11 Rendezvous

1. Abstraction Supported

The rendezvous is a synchronous and unbuffered coordination mechanism that
allows two tasks to communicate bidirectionaly.

2. Services Provided

The semantic of the rendezvous is as follows:

"* The calling task passes its "in parameters" if any to the callee task via an
entry call and is blocked pending completion of the rendezvous.

"* The callee task executes the statements in its accept body.

"* The "output parameters" if any are passed back to the calling task.
"• The rendezvous is now complete and both tasks are no longer
suspended.

18 CMU/SEI-93-TR-34



The interface provided by the callee task could be:

entry RECEIVE(INPUT_PARAMETER: in MESSAGE;
OUTPUTPARAMETER:out MESSAGE);

3. Implementation Issues

The rendezvous is the Ada mechanism for communicating tasks, so it is support-
ed by all validated Ada runtime systems.

2.2.12 Signal
1. Abstraction Supported

A task can send a signal to another task or to a group of tasks as a means of co-
ordinating those tasks. Signals differ from other coordination mechanisms in that
the receiver may either wait for a signal to arrive or may receive a signal asynchro-
nously while it is carrying out another activity.

2. Services Provided

Once a task is created, its response to a set of signals may be established (SET_-
SIGNALRESPONSE). One task can send a signal (SENDSIGNAL) to a partner,
thus invoking whatever response the receiver currently has in face. A receiver can
pause for a signal that is sent by another task (PAUSESIGNAL).

3. Implementation Issues

A signal is considered to be a software interrupt to be handled at the task level.
Signal features described above are based on an implementation using a real-
time executive [Ripps 89]. A version of this executive supports Ada applications.
Another implementation is proposed using an Ada generic package [ARTEWG
93]:

generic
with procedure TO_BE_CALLED;
package SIGNAL
procedure NON_WAITING;
end SIGNAL;

The effect of calling the procedure NON_WAITING, which is exported by an in-
stance of the SIGNAL generic package, is the same as creating a thread which
calls the TOBECALLED procedure.

CMU/SEI-93-TR-34 19



2.2.13 Timrd-Buffer
1. Abstraction Supported

The timed-buffer provides a temporary storage and blocking of data to be trans-
mitted between asynchronous tasks. The timed-buffer has a bounded capacity
and the storage time of a particular message is limited.

2. Services Provided

A timed-buffer may be used by a producer task to send (SEND) messages. When
either the timed-buffer becomes full or its time-out period is reached, the data cur-
rently in the timed-buffer is sent to the receiving task, the timed-buffer is empty,
and additional data accepted. The time-out period of the timed-buffer can be
changed (SETTIME_OUT). The timed-buffer may be deleted (DESTROY). The
interfaces provided by these services could be:

procedure SEND (B: in TIMED_BUFFER; M: out MESSAGE);
procedure SET_TIMEOUT (TIME-OUT: in DURATION);
procedure DESTROY (B: in out TIMEDBUFFER);

3. Implementation Issues

An example of a timed-buffer implementation using Ada is described in the literature
[NSWC 88]. The timed-buffer is a generic package requiring the following instantia-
tion parameters:

"* The data item type which will be placed into the timed-buffer.
"* The size of the timed-buffer.

"* An array of the data type of the data with its size equal to the timed-buffer
size.

"* A procedure SEND to send the stored data to the consumer task.
"* An optional value for the time-out period for the buffer.

"* An optional value representing how many real buffers exist (single,
double, or triple buffering).

2.2.14 Transporter

1. Abstraction Supported
A transporter can be considered to be an active data mover. The transporter
makes calls to get and send messages from and to the coordinating tasks.

2. Services Provided

A transporter is strictly a caller which gets a message from one producer (PRO-
DUCER.PROVIDEMESSAGE) and passes the message on to one consumer or
another intermediary via a call (CONSUMER.TAKEMESSAGE).

20 CMU/SEI-93-TR-34



3. Implementation Issues

The transporter is implemented using Ada. An example of Ada implementation
can be found elsewhere [Nielsen 88].

CMU/SEI-93-TR-34 21



22 CMUISEI-93-TR-34



3 Properties of the Coordination Mechanisms

The previous experiences and the analysis of the coordination mechanisms used in Ada real-
time systems allow us to determine the properties of the coordination mechanisms that could
be useful in classifying them.

We split the properties into three main groups:

"* Synchronization properties
"* Communication properties
"* Implementation issues

3.1 Synchronization Properties

Synchronization properties support basically the exclusion and prioritization capabilities of the
coordination mechanism.

Exclusion properties guarantee the blocking of certain processes wishing to access the mech-
anisms when those processes will interfere with the coordination activities already in progress
for other processes.

Some coordination mechanisms support exclusion of client processes based on the internal
state of the mechanism. For example, a full buffer does not process a write request.

Exclusion is sometimes provided by considering the state of the synchronization of the coor-
dination mechanism. An example is the barrier where the value of the count of the processes
currently accessing the barrier is the condition to open it.

Prioritization is related to the ordering of the client requests to be processed. Sometimes re-

quests are queued based in the client priority but frequently the time of arrival is the major is-
sue in ordering the client requests. So the majority of the coordination mechanisms manage
some kind of FIFO queue for prioritization.

3.2 Communication Properties

The communication properties of a coordination mechanism can be established considering
its similarities with a conventional communication link.

The properties of a communication link are related to the support of:

"* Unidirectional or bidirectional flow of information
"* The throughput of the communication link

"* The size of the messages being transported

CMU/SEI-93-TR-34 23



In the same way, the communication properties of a coordination mechanism are related to:

"* The direction of the information flow
"* The storage capacity of the coordination mechanism

"* The kind of information transmitted

In the case of pure synchronization mechanisms the information transmitted is null: those co-
ordination mechanisms that are event-oriented transmit unitary information. The rest of co-
ordination mechanisms are message-passing mechanisms.

3.3 Implementation Issues

This group of properties is related to the realization of the concept of the coordination mecha-
nism for a particular environment. The main implementation issue is the coordination mecha-
nism's dependency on the services provided by an underlying executive or operating system.

It is well known that the rendezvous is the synchronization and communication mechanism
provided by Ada. This mechanism is well suited for building more complex mechanisms such
as the relay or the transporter, but rendezvous should not be used to simulate all other mech-
anisms. The differences between the features of the coordination mechanisms make this ap-
proach unsuitable. Therefore, the state of the practice is that some Ada developers are using
the coordination mechanisms provided by real-time operating systems.

Another important issue is whether the mechanism can be implemented as an active or pas-
sive task.

An active task is that task normally requiring various threads of control. Its entries and the ren-
dezvous mechanism cause task switches which are indeed performance expensive in some
applications.

The recognition of passive tasks was brought about by two considerations: Consider the per-
formance penalties of active tasks and the possibility of implementing some coordination
mechanisms with more simplistic approaches.

The Ada Run-Time Environment Working Group (ARTEWG) defines passive tasks as those
that do not require threads of control [ARTEWG 93]. For passive tasks, entry calls can be
transformed into procedure calls, avoiding the cost of task switching.

Some restrictions should apply to avoid multiple threads of control inside a task.

It is important to stress that the declarative part is restricted to any declaration except decla-
rations of dependent tasks, inner packages, and objects of dynamic size or access types. The
default initialization for any declaration is restricted from calling user-defined functions.

24 CMU/SEI-93-TR-34



Also the following restrictions apply in a passive task:

"* In the selective wait, no delay alternative or else part is allowed.

"• Nested accept statements are not allowed.

"* Entry families are not supported.

"* In the task body there is one and only one accept statement for each entry
declared in the task specification.

"* The specification of storage size for task activation is not allowed for a
passive task and is ignored by the implementation if present.

"* Passive tasks may not have dependent tasks.

* No exception handler is allowed for the task body.

* The guard expressions must not contain calls to user-defined functions.

* The only statement allowed outside of select and accept bodies is an
unconditional loop.

Ada 9X introduces the concept of protected type which encapsulates and provides synchro-
nized access to the private data of objects of the type without the introduction of an additional
task.

As described by Barnes, protected objects are very similar to monitors8; they are passive
mechanisms with synchronization provided by the runtime system. One advantage protected
objects have over monitors is that the protocols are described by the barrier conditions rather
than the low-level signals internal to the monitor [Bames 93].

A bounded-buffer is a mechanism that can be implemented as an active or passive task. Its
implementation as an active task can be found elsewhere [Nielsen 88]. ARTEWG proposes
the following coding that could be compiled as a passive task [ARTEWG 93]:

task BUFFER is
entry READ (C: out CHARACTER);
entry WRITE (C: in CHARACTER);
pragma THREAD_OF__CONTROL(FALSE);

end BUFFER;

task body BUFFER is
POOLSIZE: constant INTEGER:= 100;
POOL: array(1..POOLSIZE) of CHARACTER;

A monitor is a collection of routines which controls and protects a particular resource. The important
characteristic of a monitor is that only one of its procedure bodies can be active at one time; even when two
processes call a procedure simultaneously, one of the calls is delayed until the other is completed. Thus the
procedure bodies act like critical regions protected by the same semaphore. C.A.R. Hoare. Communicating
Sequential Processes. Prentice Hall 1985.

CMU/SEI-93-TR-34 25



COUNT: INTEGER range 0.. POOLSIZE:= 0;
IN-INDEX, OUT-INDEX: INTEGER range 1.. POOLSIZE:= 1;

begin
loop

select
when COUNT < POOL_SIZE =>
accept WRITE (C: in CHARACTER) do
POOL(ININDEX):= C;
ININDEX:= ININDEX mod POOLSIZE + 1;

COUNT:= COUNT + 1;
end WRITE;
or when COUNT > 0 =>
accept READ (C: out CHARACTER) do
C:= POOL(OUTINDEX);
OUT_INDEX:= OUT_INDEX mod POOL_SIZE + 1;
COUNT:= COUNT - 1;
end READ;

or
terminate;
end select;
end loop;
end BUFFER;

It is important to realize how a pragma is used to give compiler directives. Other approaches
are based on the automatic recognition by the compiler of passive task candidates. Research
is being done in this area [Schilling 93].

We can compare it with the following implementation given by Barnes using Ada 9X protected
types [Barnes 93]:

protected type BOUNDEDBUFFER is
entry PUT (X: in ITEM);
entry GET (X: out ITEM);

private
A: ITEMARRAY (1.. MAX);
I, J: INTEGER range 1.. MAX:= 1;
COUNT: INTEGER range 0.. MAX:= 0;

end BOUNDED_BUFFER;

protected body BOUNDED_BUFFER is
entry PUT (X: in ITEM) when COUNT < MAX is
begin
A(I):= X;

I:= I mod MAX + 1;
COUNT:= COUNT + 1;
end PUT;

26 CMU/SEI-93-TR-34



entry GET (X: out ITEM) when COUNT > 0 is
begin
X:= A(J);

J:= J mod MAX + 1;
COUNT:= COUNT - 1;
end GET;
end BOUNDED_BUFFER;

Another implementation issue that can be considered in several situations is the information
passing mechanism. Sometimes it can be done by copying the entire data transmitted (pass-
ing by value); other times the data is passed by reference.

CMU/SEI-93-TR-34 27



28 CMU/SEI-93-TR-34



4 Features Model of the Coordination Mechanisms

Features are the attributes of a system that directly affect end-users [Kang 90].

In our particular situation, we are not performing a full domain analysis of a family of systems;
our goal is less ambitious. We are trying to classify consistently the coordination mechanisms
to be used for Ada real-time applications. So our end user is the software engineer; the at-
tributes to be analyzed are those that will help the software engineers in the selection of the
coordination mechanism best matching their design and implementation constraints.

The features model represents those attributes and considers the relationships between them.
The structural relationship, which represents a logical grouping of features, is of major interest.
Alternative or optional features of each grouping are also represented in the features model.

A graphical representation and a textual description of the features selected is presented be-
low. The graphical notation follows the notation and conventions used in the feature-oriented
domain analysis of the Army movement control domain [Cohen 92].

The notation for describing the basic relationships between features (mandatory, altemative,
and optional) is given below.

Mandatory Feature-name (tuple of: X). This notation is used for parent features where
X is the number of child features. Feature-name signifies leaf feature.

Alternative Feature-name (one of: X). This notation is used for parent features where
X is the number of alternate children.

Optional Optional leaf features are denoted by the (boolean) notation after the
name.*

"Boolean notation is not used in the features model of the coordination mechanisms.

CMU/SEI-93-TR-34 29



Features (tuple of:4)

Identification (one oft'2) Implementation (tuple of 3)

Synchronization (tuple ot 2) Communication (tuple of:3)

direnaminglndircA_ amrng

Figure 4-1: Top Level Features Model for the Coordination Mechanisms

As shown in Figure 4-1, there are four main groups of features within the coordination mech-
anisms domain:

1. Identification. Those features that describe the way in which the coordinating
processes that want to synchronize or communicate refer to each other.

2. Synchronization. Those features that describe the exclusion and priontization
properties of the coordination mechanisms.

3. Communication. Those features that describe the information transfer
capabilities of the coordination mechanisms.

4. Implementation. Those features that describe the realization aspects of the
coordination mechanisms.

Each of these groups of features is described in more detail in the following paragraphs.

4.1 Identification Features

The identification features shown in Figure 4-1 fall in two major categories or naming schemes:
direct and indirect naming.

1. Direct Naming. When using this discipline, a process that wants to synchro-
nize or communicate with another must explicitly name the recipient partner.

A communication between processes using this naming scheme has the fol-

lowing properties [Silberschatz 91]:

A link is established between every pair of processes that want to
communicate. The caller needs to know the identity of the task to be
called in order to communicate.

30 CMU/SEI-93-TR-34



"* A link is associated with exactly two processes.

"* Between each pair of communicating processes, there already exists one
link.

2. Indirect Naming. When using this discipline, the processes use some kind of
intermediate object to place or remove the transmitted information, so
coordination partners identities are hidden.

This naming scheme has the following properties [Silberschatz 91]:

"* A link is established between a pair of processes only if they share a
coordination mechanism.

"* A link may be associated with more than two processes.

"* Between each pair of communicating processes, there may be a number
of different links, each corresponding to one coordination mechanism.

"* A link may be either unidirectional or bidirectional. 9

4.2 Synchronization Features

The synchronization features shown in Figure 4-2 provide the means of describing the exclu-
sion and prioritization constraints of the coordination mechanisms.

The two top-level synchronization features are exclusion constraints and ordering constraints.
These features are described below.

1. Exclusion constraint features describe the properties that guarantee the
blocking of certain processes that are attempting to access the coordination
mechanism but that will interfere with the coordination activities already in
progress by other processes. Some coordination mechanisms support exclu-
sion of client processes based on the intemal state of the mechanism. For ex-
ample a full buffer does not process a write request. A second group of coor-
dination mechanisms supports exclusion based on the synchronization state
of the mechanism. Synchronization state includes all state information need-
ed only for synchronization purposes. An example is the barrier mechanism,
where the value of the count of the processes currently accessing the barrier
is the condition to open it. A third group of coordination mechanisms support
exclusion based on the history that has occurred. That is, as in the case of the
pulse mechanism, the execution of its set procedure resumes all waiting
tasks in an order that is implementation dependent. This occurrence is not
latched, so later waiting tasks are not resumed by the previous set procedure
execution.

Exclusion constraints may be either single enabling or multiple enabling. Sin-
gle enabling mechanisms permit only one client process when more than one

9- An unidirectional link supports only flow of data in one direction. A bidirectional link supports data interchange
in either direction. This feature is considered as a communication feature. See Section 4.3 of this report.

CMU/SEI-93-TR-34 31



is waiting for coordination. Multiple enabling mechanisms release all client
processes that satisfy the exclusion condition.

2. Ordering constraint features are concerned with the prioritization of the client
requests to be processed. Sometimes requests are queued based on the
client priority. Another group of coordination mechanisms orders the requests
by their time of arrival.

Synchronization (tuple of:2)

Exclus or' Constraints Ordering Constraints(one of.:3) (ontse of:3)

Internal State Prioiy'
(one of:2) Synchronization State History t Time of Ai'

A(one o~f: 2)) 
(one of:2)Boh

Si gle Latched
Enabling' Multiple Single Multiple t(one of: 2) Latched

Enabling' Enabling' Enabling' (one of: 2)

SiMultiple Single MultipleSinge MUltiple Enabling' Enabling'

Enabling' Enabling'

Figure 4-2: Synchronization Features

32 CMU/SEI-93-TR-34



4.3 Communication Features

The communication features describe the communication capabilities of the coordination
mechanism. For the mechanisms analyzed, we found three child features to represent com-
munication properties: storage capacity, flow of information, and transmitted information.
These features are shown in Figure 4-3.

1. Storage Capacity. This feature characterizes the capacity of the coordination
mechanism for buffering the events or messages transferred between com-
municating partners. The capacity may be either null, bounded, or unbound-
ed. The Ada rendezvous could be considered as an example of null capacity
communication mechanism.

2. Direction of Flow. When the communication is established the flow of data
can be in either one or two directions. Unidirectional mechanisms are those
where the flow of data is in one direction. Bidirectional mechanisms are those
where the flow of data is in two directions. Whether the mechanism is a pure
synchronization mechanism, there is no flow of data.

3. Transmitted Information. The information transmitted when a link is
established between two or more communicating partners may be either
none, unitary, or multiple. In pure synchronization mechanisms, the
information transmitted is none. Event-oriented coordination mechanisms
transmit unitary information. Message-oriented coordination mechanisms
transmit multiple information. Messages may be either fixed length or variable
length. One of the differences between a buffer and a mailbox is specifically
the length of the messages. The buffer handles fixed length messages; the
mailbox handles variable length messages.

Communication (tuple of: 3)

Storage Capacity Direction of Flow Transmitted Information

(0 e of: 3) (one of: 3) (one of: 3)

none'unidirectional ii'ecinl

null' bounded' none' multiple
unbounded' unitary' (one of: 2)

fixed length' variable length'

Figure 4-3: Communication Features

CMU/SEI-93-TR-34 33



4.4 Implementation Features

The implementation features denote those features related to the realization of the coordina-
tion mechanism for a particular environment.

The implementation features fall in three major categories: operating system dependency, in-
formation passing mechanism, and the existent threads of control.

These three groups of features are shown in Figure 4-4.

Implementation (tuple of: 3)

OS Dependency Information Passing Mechanism Threads of Control
(one of: 3) (one of: 2) (one of: 2)

OS Services' Ada' By COPY' By Reference' A ive' Passive'

External Ubrary'

Figure 4-4: Implementation Features

The implementation features categories are:

1. Operating System Dependency. This feature determines the dependency be-
tween the coordination mechanism and the services supported by a real-time
executive or operating system. We can distinguish three different situations:

"* The coordination mechanism is implemented using a real-time executive
or operating system.

"• The coordination mechanism is implemented by an extended
runtime library that supplements the original runtime library, for example
CIFO entries [ARTEWG 93] or EXTRA entries [RRG 93].

"* The coordination mechanism is implemented using the Ada language.

34 CMU/SEI-93-TR-34



2. Information Passing Mechanism. This feature describes the information
transferring mode used in the coordination mechanism. Information transfer
can be done by copying the entire data transmitted or by passing data by
reference.

3. Threads of Control. Those features characterize the implementation of the
coordination mechanism as an active task or as a passive task. The
requirements to be met by an Ada task to be compiled as a passive task are
described in Chapter 3.

CMU/SEI-93-TR-34 35



36 CMU/SEI-93-TR-34



5 Guidelines for Using the Taxonomy

5.1 Application of the Guidelines

The following sections exhibit a collection of mechanically applicable design rules created
based on the features model described above and known experiences in the design of real-
time systems.

The order applied to the guidelines tries to be consistent with the specific choices that should
be taken during the software development cycle of a real-time system. It is not the purpose of
this report to avoid existent design methodologies; rather, we hope to complement them. Our
goal is to help the software engineer in the selection of the most suitable coordination mech-
anism for the particular situation to be solved.

The guidelines are split in several groups related to the features model. Not all the guidelines
should always be applied. Designer experience could dictate the optimum approach.

Object boundaries in an object-based concurrent system are determined by the mechanisms
for abstraction, distribution, and synchronization [Wegner 92].The abstraction boundary is the
interface an object presents to its clients. The distribution boundary is the boundary of acces-
sible names visible from within an object. The synchronization boundary of an object is the
boundary at which threads entering an object synchronize with ongoing activities in the object.

The following guidelines deal with issues concerning object boundaries of either the coordina-
tion mechanisms or the coordinating partners themselves.

5.2 Abstraction Related Guidelines

What Is the problem to be solved?
Three common problems may arise when objects interact with each other:

"* the mutual exclusion problem
"* the producer consumer problem
"* the readers and writers problem

The mutual exclusion problem occurs when objects need exclusive access to a resource, such
as a shared data or physical device. Mechanisms such as the general semaphore or the lock
are well suited to resolve the mutual exclusion problem.

The producer consumer problem occurs when objects need to communicate in order to pass
data from one partner to another partner. Message-passing mechanisms are recommended.
The selection of the best candidate is based on guidelines explained later.

The readers and writers problem is similar to the mutual exclusion problem but reader objects
are not required to exclude one another. This problem is an abstraction of access to databas-

CMU/SEI-93-TR-34 37



es, where there is no danger in having several processes read concurrently but writing or
changing the data must be done under mutual exclusion to ensure consistency. Some multiple
enabling mechanisms are well suited to this purpose, for example, the blackboard. Other
guidelines should be considered in the selection process.

Can we simulate one mechanism with another?
Three issues should be evaluated when trying to simulate one coordination mechanism with
another [Ripps 89]:

"* the extent to which the features of the coordination mechanism can be
simulated

"* the degree to which the unblocking function used in one mechanism can
be simulated using different mechanisms

"* the efficiency, clarity, and vulnerability of such simulations
Concurrency Coupling
A concurrent system is loosely coupled if the partners' interactions are well balanced in terms
of caller/callee decisions and the use of intermediaries; the amount of busy wait has been min-
imized and appropriate modes have been used for the parameters passed [Nielsen 88].

The direct naming schemes, particularly the Ada rendezvous, imply tightly coupling between
the coordinating partners.

When loose coupling is required between the coordinating partners, for example, a producer
consumer pair, intermediary coordination mechanisms such as a buffer, transporter, relay or
combinations are introduced.

Five different paradigms can be established for loosely coupling between a producer consum-
er pair:

Producer-Buffer-Consumer. The use of a buffer allows the producer and
consumer to operate asynchronously.

Producer-Buffer-Transporter-Consumer. This paradigm avoids the consumer
having to wait for the rendezvous with the buffer task. It supports the
consumer as a server object.

Producer- Transporter-Buffer-Transporter-Consumer. This paradigm also
avoids the producer having to wait for the rendezvous with the buffer task.

Producer-Relay-Consumer. This paradigm is adequate in such cases where
the producer is an agent object and the consumer is a server object, but has
the drawback of the lack of storage capacity of the relay.

Producer-Timed_Buffer-Consumer. This paradigm is adequate when a full
set of data is needed by the consumer but can only be supplied slowly by the
producer.

38 CMU/SEI-93-TR-34



5.3 Implementation Related Guidelines

Portability Issues
Portability requirements are usually specified durng the requirements specification phase.
Portability requirements can constrain the selection of the available coordination mechanisms.

Those designers using Ada-based coordination mechanisms should avoid the selection of
mechanisms implemented by a real-time executive. The simulation of a coordination mecha-
nism implemented by a real-time executive using Ada language is sometimes inadvisable con-
siderng the Ada rendezvous features and the differences with other mechanisms. (See
Appendix A).

Those designers using a real-time executive should avoid frequent use of the rendezvous
mechanism. Therefore, coordination mechanisms based on rendezvous are excluded.

Those mechanisms provided by extemal libraries (Appendix A), give the designer the highest
flexibility in the selection process. Therefore, they are very suitable for medium and complex
real-time applications.

.4 Communication-Related Guidelines

Can the link be associated with more than two partners?
As described in Section 4.1, indirect naming schemes are more flexible in supporting multiple
communicating partners, so coordination mechanisms using indirect naming provide software
architectures easily adapted to support additional partners.

Indirect naming schemes are also best suited to perform load leveling, that is, distribute the
transactions equitable between consumer processes. But if the critical issue is to coordinate
with the completion of the transaction, direct naming schemes, for example the Ada rendez-
vous, are more appropriate.

Modularity is also improved with indirect naming schemes.

Exclusion and ordering constraints should also be considered when selecting a coordination
mechanism for multiple partner communication. Message exchange does not necessarily lead
to mutual exclusion.

Is a link with some storage capacity needed?

Considering the producer consumer problem, it is necessary to select a coordination mecha-
nism with storage capacity whenever the producer and consumer processes execute at differ-
ent periods unless blocking situations are permitted.

CMU/SEI-93-TR-34 39



It is important to mention that in non-zero-capacity coordination, the sender does not know
whether a message has arrived at its destination after the SEND operation is completed. This
concern is addressed in the following paragraph.

Is the link unidirectional or bidirectional?
Bidirectional links are required when the sender requires a reply from the receiver.

A bidirectional link can be established using a bidirectional coordination mechanism or two uni-
directional coordination mechanisms. The first approach implies more coupling between the
sender and the receiver. The use of two unidirectional coordination mechanisms is perfor-
mance-expensive but implies less coupling between the communicating partners.

Which kind of information Is transmitted?
If no information is transmitted between the coordinating partners, a pure synchronization
mechanism is more suitable. Examples are the barrier, the pulse, and the general semaphore
mechanisms.

In case unitary information is transmitted, event-oriented coordination mechanisms are appro-
priate. But if different event flows are transmitted between the sender and the receiver, a mes-
sage-passing coordination mechanism should be selected.

Transmitting multiple information requires a message-passing coordination mechanism such
as a broadcast, blackboard, buffer, mailbox, relay, or transporter. Frequently the message has
an Ada type, so it is subject to the strong Ada-type rules. The mailbox is the most flexible
mechanism regarding this issue. Synchronization and implementation features should be tak-
en into account in the selection process.

5.5 Synchronization Related Guidelines

Is a multiple-enabling method required?
When it is necessary to release more than one waiting partner at a time, multiple-enabling co-
ordination methods are required. Blackboard, broadcast, event, and pulse are multiple-en-
abling coordination mechanisms. The selection of the best candidate is based on diverse
considerations including exclusion constraints, message-passing properties, and other fea-
tures.

Ordering of Requests
Some coordination mechanisms only order pending requests by the time of arrival, so a FIFO
ordering is provided. Whenever the relative importance of pending requests is to be handled,
coordination mechanisms providing priority queues should be considered.

40 CMU/SEI-93-TR-34



5.6 Scheduling Issues

It is not the purpose of this report to establish guidelines for the scheduling of real-time appli-
cations. A diversity of scheduling techniques is proposed in the literature [Xu 93].

Controlling Priority Inversion
Priority inversion is defined as the situation in which a low-priority process is using a resource
while a higher-priority process is forced to wait for the resource.

Unbounded priority inversion may occur in processes that synchronize to share a resource in
a mutually exclusive manner or processes implementing the producer consumer paradigm. So
the designers objective should be to bound the priority inversion.

Klein et al. propose diverse recommendations and guidelines to bound priority inversion when
using coordination mechanisms [Klein 93]. These guidelines are summarized below.

In the mutual exclusion problem, the use of some synchronization protocol that will bound pri-
ority inversion is recommended. If the operating system or the runtime system do not provide
one of these protocols, alternatives are proposed:

"* Increase the priority of the task just before entering the resource
"* Disable task preemption just before entering the resource
"* Encapsulate all access to the resource in a task with an assigned priority

level equal to the ceiling of the resource
In the consumer producer problem, priority inheritance maybe recommended as the solution
to the unbounded priority inversion. This solution is described in the implementation issues
paragraph of the coordination mechanisms (Chapter 2).10 If several producers are sending
data to a consumer, it is required to order the messages considering the sender priority.

10- Priority inheritance tends to work mostly in directed mechanisms where the current blocker can be identified.
Hence without modification, it fails in general producer-consumer synchronization models, where the producer
does not know the consumer is (or vice versa). Ragunathan Rajkumar. Personal communication. November
1993.

CMU/SEI-93-TR-34 41



42 CMU/SEI-93-TR-34



6 Conclusions

The taxonomy proposed provides a design space for real-time systems that can be used for
several purposes:

"* as a classification scheme for reusable software components

"* as guidelines for novice designers of real-time systems

"* as criteria for reverse engineering activities, helping to understand
existing applications

"* as the basis for the developing of real-time generic software architectures
in diverse domains

The taxonomy was developed considering Ada applications. Its use for the development of ap-
plications in other languages such as C is possible considering only the coordination mecha-
nisms supported by real-time operating systems.

Some of the components classified in the taxonomy have been used in the development of
pilot real-time monitoring systems for small factory"1 and laboratory applications. 12 The func-
tionalities implemented are:

"* Data acquisition

"* Range checking
"* Conversion to engineering units
"* Alarm checking

"* Historical data storage

Testing the taxonomy and the guidelines in other real-time domains is highly recommended.

Further research is recommended for communication and synchronization in distributed sys-
tems or between partitions executing in the same or on different core module. 13

1F. J. Garcia. Realizacion en Ada del Software do un Sistema de Adquisicion de Datos para una Pequena
Industria. Proyeto Fin de Carrera. Madrid Technical University, 1993.

12. B. Alvarez. Desarrollo de un Sistema de Monitorizacion do Procesos para Laboratorio. Proyecto Fin de

Carrera. Madrid Technical University, 1993.

13. A partition is basically the same as a program in a single application environment it comprises data, its own

context, configuration attributes, etc. [ARINC 93].

CMU/SEI-93-TR-34 43



4 CMU/SEI-93-TR-34



7 References

[ARTEWG 93] Ada Run-Time Environment Working Group. Catalogue
of Interface Features and Options for the Ada Runtime
Environment. ACM, Draft Release 3, May 1, 1993.

[ARINC 93] Aeronautical Radio Inc. Avionics Application Software
Standard Interface. AECC, Draft 7, August 13, 1993.

[NSWC 88] Naval Surface Weapons Center. Ada Run-Time Support
Services for Complex Time-Critical, Embedded Applica-
tions.User's Manual. December 5, 1988.

[RRG 93] Real-Time Rapporteur Group. Proposed Dr ft Standard
for Extensions for Real-Time Ada. EXTRA Team Secre-
tariat CR2A, Draft Version 3.00, October 15, 1993.

[Barnes 93] Barnes, John. Introducing Ada 9X. Intermetrics, 1993.

[Bloom 79] Bloom, Toby. Evaluating Synchronization Mechanisms.
Proceedings of the 7th Symposium on Operating Sys-
tems Principles. Pacific Grove, California: ACM SIGOPS,
Dec. 10-12,1979.

[Chi 91] Chi Tau Lai, Robert. Ada Task Taxonomy Support for
Concurrent Programming. ACM Software Engineering
Notes, 16.1, January 1991.

[Cohen 92] Cohen, Sholom; Stanley Jay; Peterson, Spencer;& Krut,
Robert. Application of Feature-Oriented Domain Analysis
to the Army Movement Control Domain. (CMU/SEI-91-
TR-28, ADA256590). Pittsburgh, Pa.: Software Engineer-
ing Institute, Carnegie Mellon University, 1992.

[industrial 88] Industrial Programming Inc. MTOS-UX/Ada Product pro-
file. New York, 1988.

[Kang 90] Kang, Kyo; Cohen, Sholom; Hess, James; Novak, Will-
iam; & Peterson, Spencer. Feature-Oriented Domain
Analysis (FODA) Feasibility Study. (CMU/SEI-90-TR-21,
ADA235785). Pittsburgh, Pa.: Software Engineer Insti-
tute, Carnegie Mellon University, 1990.

[Kamrad 92] Kamrad, Mike. Chapter 17, Understanding Ada Runtime
Environments, 234-293. Mission Critical Operating Sys-
tems. lOS Press, 1992.

CMU/SEI-93-TR-34 45



[Klein 93] Klein, Mark; Ralya, Thomas; Pollak, Bill; Obenza, Ray; &
Gonzalez Harbour, Michael. A Practitioner's Handbook
for Real-Time Analysis: Guide to Rate monotonic Analy-
sis for Real-Time Systems. Norwell, MA.: Kluwer Aca-
demic Publishers,1993.

[Nielsen 88] Nielsen, Kjell; & Shumate, Ken. Designing Large Real-
Time Systems with Ada. New York, N.Y.: Multiscience
Press, 1988.

[Petroski 92] Petroski, Henry. To Engineer is Human. The Role of Fail-
ure in Successful Design. Vintage Books, 1992.

[Ripps 89] Ripps, David. An Implementation Guide to Real-Time
Programming. Englewood Cliffs, New Jersey: Yourdon
Press, 1989.

[Schilling 93] Schilling, Jonathan. Monitor (Passive) Task Optimization.
Personal communication. October 1993.

[Sha 89] Sha, Lui; & Goodenough, John. Real-Time Scheduling
Theory and Ada. (CMU/SEI-89-TR-14,ADA211397).
Pittsburgh, Pa.: Software Engineering Institute, Carnegie
Mellon University, 1989.

[Silberschatz 91] Silberschatz, Abraham; Peterson, James; & Galvin, Pe-
ter. Operating System Concepts. Reading, MA.: Addison-
Wesley, 1991.

(Wegner 92] Wegner, Peter. Design Issues for Object-Based Concur-
rency. Lecture Notes in Computer Science # 612.Berlin,
New York: Springer Verlag 1992.

[Xu 93] Xu,Jia; & Parnas, David. On Satisfying Timing Con-

straints in Hard-Real-Time Systems. IEEE Transactions
on Software Engineering, 19.1, Jan. 93.

46 CMU/SEI-93-TR-34



Appendix A Taxonomy

This appendix represents the taxonomy of the coordination mechanisms analyzed.

In some mechanisms there are features characterized To Be Determined (TBD). The reason
is that the realization of this feature is implementation dependent so it is responsibility of the
coordination mechanism developer to implement the particular feature.

When a feature is not applicable in a particular coordination mechanism, it is indicated by the
N/A acronym.

CMU/SEI-93-TR-34 47



Barrier Blackboard BR Buffer Broadcast Events

Identification indirect indirect indirect indirect indirect

Synchronization
Exclusion Constraints

Internal State no m.enabling s. enabling no m. enabling
Synchronization State m. enabling no no no no
History

Latched no no no no no
Not Latched no no no m. enabling no

Ordering Constraints
Priority no TBD no TBD no
Time of Arrival no TBD yes TBD no

Communication
Storage Capacity null bounded bounded bounded bounded
Direction of Flow N/A unidirectional unidirectional unidirectional unidirectional
Transmitted Information

None yes no no no no
Unitary no no no no yes
Multiple no fixed length fixed length fixed length no

Implementation
OS Dependency

OS Services no no yes no yes
External Library yes yes yes yes yes
Ada no no yes no no

Information Passing Mechanism N/A copy copy copy copy
Threads of Control TBD TBD passive TBD TBD

48 CMU/SEI-93-TR-34



G.Semaphore Lock Mailbox Pulse Relay

Identification indirect indirect indirect indirect indirect

Synchronization
Exclusion Constraints

Internal State s. enabling s. enabling no no no
Synchronization State no no no no no
History

Latched no no s.enabling no s. enabling
Not Latched no no no m.enabling no

Ordering Constraints
Priority yes no yes TBD no
"Time of Arrival yes yes yes TBD yes

Communication
Storage Capacity null null null null bounded
Direction of Flow N/A N/A unidirectional N/A unidirectional
Transmitted Information

None yes yes no yes no
Unitary no no no no no
Multiple no no var. length no fixed length

Implementation
OS Dependency

OS Services yes no yes no no
External Library no yes no yes no
Ada no yes no no yes

Information Passing Mechanism N/A N/A copy N/A copy
Threads of Control TBD TBD TBD TBD TBD

CMU/SEI-93-TR-34 49



Rendezvous Signal T_Buffer Transporter

Identification indirect indirect indirect indirect

Synchronization
Exclusion Constraints

Internal State no no s. enabling no
Synchronization State no no no no
History

Latched s. enabling no no s. enabling
Not Latched no s. enabling no no

Ordering Constraints
Priority no N/A no no
Time of Arrival yes N/A yes yes

Communication
Storage Capacity null null bounded bounded
Direction of Flow bidirectional unidirectional unidirectional unidirectional
Transmitted Information

None no no no no
Unitary no yes no no
Multiple fixed length no yes fixed length

Implementation
OS Dependency

OS Services no yes no no
External Ubrary no yes no no
Ada yes no yes yes

Information Passing Mechanism copy N/A copy copy
Threads of Control TBD active TBD TBD

50 CMUISEI-93-TR-34



Appendix B Coordination Mechanisms Catalog

The Coordination Mechanisms Catalog represents the coordination mechanisms found in the
various real-time executives, pure Ada applications, or extended libraries analyzed during the
domain analysis activity.

In the feature catalog table the following conventions are used

1. Name: This is the name used for this coordination mechanism.

2. =Yes/No": This coordination mechanism does/does not exist on this system.

3. <TBD>: No information was collected for this coodination mechanism.

The systems analyzed and represented in the catalog are the following:

Ada: Here are represented those systems using coordination
mechanisms implemented in Ada. Examples are found elsewhere
[NSWC 88], (Nielsen 88].

ARINC: The primary objective of the document analyzed is to define a
general purpose interface between the operating system of an
integrated avionics core processor module and the application
software [ARINC 93].

CIFO: The document proposes a common set of user-runtime
environment interfaces from a user's perspective [ARTEWG 93].

EXTRA: The purpose of the document is to define a standard Ada library
for hard real-time (HRT) to support application portability at the
source level [RRG 93].

MTOS-UX: It represents a commercial runtime support executive. The
MTOS-UX/Ada is an operating system that can handle
multiprocessing for real-time and the Ada language [Industrial
88].

CMU/SEI-93-TR-34 51



Ada ARINC CIFO EXTRA MTOS-UX

Coordination Mech.

Barrier no no yes yes no
Blackboard no no yes yes no
BoundedBuffer yes yes yes yes TBD
Broadcast no no yes yes no
Event TBD yes yes yes yes
GeneralSemaphore TBD yes no no yes
Lock yes no yes TBD no
Mailbox no no no no yes
Pulse no no yes yes no
Relay yes no no no no
Rendezvous yes TBD yes yes yes
Signal TBD no yes yes yes
Timed_Buffer yes no no no no
Transporter yes no no no no

52 CMU/SEI-93-TR-34



I.NUINTED. UNCLASSIFIED
58CURMT a.ASSIPIAinom OF 7111S PAGE

REPORT DOCUMENTATION PAGE
IL. REPORT SECURITY CLASSIFICATION l b. RESTRIC!TIVE MARKINGS

Unclassified None
2.. SECURITY CLASSIFICATION AUTHORIrY 3. DISTRIBUTION/AVALLABIUITY OF REPORT

N/A Approved for Public Release
&b DECLSSFCATIOWiDOWNGRADING SCEDL Distribution Unlimited
N/A
4. PERFORMING ORGANIZATI[ON REPORT NUMBER(S) S. MONITORING ORGANIZA71ON REPORT NUMBER(S)

CMLJSEI-93-TFI-34 ESC-TR-93-321

6&L NAME OF PERFORMING ORGANZATION 6b~. OFFICE SYMBOL 7&. NAME OF MONITORING ORGANIZATION

Software Engineering Institute (ifapplicable) SEI Joint Program Office
SEI

6c. ADDRESS (city, slate, and zip code) 7b. ADDRESS (city. stect, and zi code)

Carnegie Mellon University HO ESO/ENS
Pittsburgh PA 15213 5 Eglin Street

Hanscom AFB, MA 01731-2116
&L. NAME OFFUNDINGISPONSORING [8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATIONI (if applicable) Fl196289000003
SEI Joint Program Office ESVIENS

Sc. ADDRESS (city, astle, and zip code)) 10. SOURCE OF FUNDING NOS.
CmgeMloUnvriyPROGRAM PROJECT TASK WORK UNIT

Catsbregie Melo Univrsit ELEMEN NO No. NO NO.
Pitsurh A 52363756E N/A N/A N/A

1I. TILE (Include security Cluaaficattuon)

A Taxonomy of Coordination Mechanisms Used in Real-Time Software Based on Domain Analysis
12. PERSONAL AUTHOR(S)

Jose L Fernandez

16. SUPPLEMENTARY NOTATION

17. COSATI CODES ______-18. SUBJECT TERMS (continue on reverse of necessary and identify by block number)

FIELD GROUP SUB. GR. -taxonomy, coordination mechanisms, concunrent processes, real-timej________software architectures, domain analysis

19. ABSTRACT (continue on revaem if necessmy and identify by block number)

A taxonomy of the coordination mechanisms for the synchronization and communication of concur-
rent processes is proposed. The taxonomy deals with the issues of a real-time software architecture
that are application domain independent. The taxonomy will help the designer to find the appropriate
coordination mechanisms for building a real-time domain specific software architecture. Features
Oriented Domain Analysis methodology has been used to describe the taxonomy. While Ada is the
programming language that has been used here, some of the attributes and guidelines are still valid
for other programming languages.

(plieae turn over)

20. DISTRIBUTION/AVAILABIIJTY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSJFIEDIUNUIMFITD N SAME AS RP1f DIC USERSES Unclassified, Unlimited Distlribution

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER (include are code) 22c. OFFICE SYMBOL

Thomas R. Miller, Lt Col, USAF (412) 268-7631 SEN (EI

DO FORM 1473. 83 APR EDITON of I JAN 73 IS OBSOLT.~E UNLIMITED, UNCLASSIFIED



W A - oodwn ba pp or^ hMac 19


